27,551 research outputs found

    Neurotoxicity induced by mephedrone: an up-to-date review

    Get PDF
    BACKGROUND: Mephedrone is a β-ketoamphetamine belonging to the family of synthetic cathinones, an emerging class of designer drugs known for their hallucinogenic and psychostimulant properties as well as for their abuse potential. OBJECTIVE: The aim of this review was to examine the emerging scientific literature on the possible mephedrone-induced neurotoxicity, yet not well defined due to the limited number of experimental studies, mainly carried on animal models. MATERIALS AND METHODS: Relevant scientific articles were identified from international literature databases (Medline, Scopus, etc.) using the keywords: "Mephedrone", "4-MMC," "neurotoxicity," "neuropharmacology", "patents", "monoamine transporters" and "neurochemical effects". RESULTS: Of the 498 sources initially found, only 36 papers were suitable for the review. Neurotoxic effect of mephedrone on 5-hydroxytryptamine (5-HT) and dopamine (DA) systems remains controversial. Although some studies in animal models reported no damage to DA nerve endings in the striatum and no significant changes in brain monoamine levels, some others suggested a rapid reduction in 5-HT and DA transporter function. Persistent serotonergic deficits were observed after binge like treatment in a warm environment and in both serotonergic and dopaminergic nerve endings at high ambient temperature. Oxidative stress cytotoxicity and an increase in frontal cortex lipid peroxidation were also reported. In vitro cytotoxic properties were also observed, suggesting that mephedrone may act as a reductant agent and can also determine changes in mitochondrial respiration. However, due to the differences in the design of the experiments, including temperature and animal model used, the results are difficult to compare. CONCLUSIONS: Further studies on toxicology and pharmacology of mephedrone are therefore necessary to establish an appropriate treatment for substance abuse and eventual consequences for public health

    Preclinical discovery of duloxetine for the treatment of depression

    Get PDF
    Introduction: Affective disorders, including major depressive disorder (MDD), are among the most severely disabling mental disorders, and in many cases areIntroduction: Affective disorders, including major depressive disorder (MDD), are among the most severely disabling mental disorders, and in many cases are associated with poor treatment outcomes. From the emergence of the monoamine hypothesis of depression, the first-line treatment for MDD had mainly acted by inhibiting monoamine reuptake, and thereby increasing these levels in the synaptic cleft. However, in recent years, several newantidepressant drugs have appeared, including duloxetine, a dual serotonin (5-HT) and noradrenaline (NA) reuptake inhibitor recommended for the treatment of MDD. Areas covered: The article reviews and discusses the biochemical and functional profile of duloxetine splitting the review into acute and long-term treatment with this dual monoamine reuptake inhibitor. In addition, the authors summarize available preclinical behavioral research data, which have demonstrated among other effects, the antidepressant-like activity of duloxetine in several animal models. The authors focus on the most recent literature on synaptic neuroplasticity modulation of this antidepressant drug. Finally, the authors briefly mention other approved indications of duloxetine. Expert opinion: Duloxetine inhibits 5-HT and NA reuptake, effectively desensitizes various autoreceptors and promotes neuroplasticity. Clinically, duloxetine is an effective antidepressant that is well tolerated and has significant efficacy in the treatment of MDD. associated with poor treatment outcomes. From the emergence of the monoamine hypothesis of depression, the first-line treatment for MDD had mainly acted by inhibiting monoamine reuptake, and thereby increasing these levels in the synaptic cleft. However, in recent years, several new antidepressant drugs have appeared, including duloxetine, a dual serotonin (5-HT) and noradrenaline (NA) reuptake inhibitor recommended for the treatment of MDD

    Organic Cation Transporter 3: A Cellular Mechanism Underlying Rapid, Non-Genomic Glucocorticoid Regulation of Monoaminergic Neurotransmission, Physiology, and Behavior

    Get PDF
    Corticosteroid hormones act at intracellular glucocorticoid receptors (GR) and mineralocorticoid receptors (MR) to alter gene expression, leading to diverse physiological and behavioral responses. In addition to these classical genomic effects, corticosteroid hormones also exert rapid actions on physiology and behavior through a variety of non-genomic mechanisms, some of which involve GR or MR, and others of which are independent of these receptors. One such GR-independent mechanism involves corticosteroid-induced inhibition of monoamine transport mediated by “uptake2” transporters, including organic cation transporter 3 (OCT3), a low-affinity, high-capacity transporter for norepinephrine, epinephrine, dopamine, serotonin and histamine. Corticosterone directly and acutely inhibits OCT3-mediated transport. This review describes the studies that initially characterized uptake2 processes in peripheral tissues, and outlines studies that demonstrated OCT3 expression and corticosterone-sensitive monoamine transport in the brain. Evidence is presented supporting the hypothesis that corticosterone can exert rapid, GR-independent actions on neuronal physiology and behavior by inhibiting OCT3-mediated monoamine clearance. Implications of this mechanism for glucocorticoid-monoamine interactions in the context-dependent regulation of behavior are discussed

    Meeting report : Neuropathology and Neuropharmacology of Monoaminergic systems

    Get PDF
    The third EU COST Action CM1103 “Structure-based drug design for diagnosis and treatment of neurological diseases: dissecting and modulating complex function in the monoaminergic systems of the brain” Annual Conference entitled “Neuropathology and Neuropharmacology of Monoaminergic Systems” was hosted by the University of Bordeaux, France on 8-10 October 2014. The conference, organized by Prof. De Deurwaerdère, was supported by COST (European Cooperation in Science and Technology) and LABEX (LABEX Brain, University of Bordeaux). The program took the form of a three-day meeting, comprising a series of French and international invited talks and breakout sessions designed to identify key gaps in current knowledge and potential future research questions. The aims of this Conference were two-fold: 1. To identify the current state-of-the-art in the understanding of the pathological mechanisms that contribute to different neuropsychiatric disorders, and to what extent, monoamines a multi-target drugs and/or other interventions might prevent these changes. 2. To identify specific areas of research where information is sparse but which are likely to yield data that will impact on future strategies to treat neurodegenerative disorders.peer-reviewe

    (E)-3-Heteroarylidenechroman-4-ones as potent and selective monoamine oxidase-B inhibitors

    Get PDF
    A series of (E)-3-heteroarylidenechroman-4-ones (1a-r) was designed, synthesized and investigated in vitro for their ability to inhibit the enzymatic activity of both human monoamine oxidase (hMAO) isoforms, hMAO-A and hMAO-B. All the compounds were found to be selective hMAO-B inhibitors showing IC50 values in the nanomolar or micromolar range. (E)-5,7-Dichloro-3-{[(2-(dimethylamino) pyrimidin-5-yl]methylene}chroman-4-one (1c) was the most interesting compound identified in this study, endowed with higher hMAO-B potency (IC50 ¼ 10.58 nM) and selectivity (SI > 9452) with respect to the reference selective inhibitor selegiline (IC50 ¼ 19.60 nM, IC50 > 3431). Molecular modelling studies were performed for rationalizing at molecular level the target selective inhibition of our compounds, revealing a remarkable contribution of hydrogen bond network and water solvent

    MK-801 blocks monoamine transporters expressed in HEK cells

    Get PDF
    Abstract(+)-MK-801 is known to be a specific non-competitive antagonist of N-methyl-d-aspartate (NMDA) receptors. However, besides having an anticonvulsant effect, this compound possesses a central sympathomimetic effect and an anxiolytic-like action, raising the possibility that (+)-MK-801 might affect monoamine uptake systems. To elucidate this possibility, we investigated the effects of (+)-MK-801 on monoamine transporters expressed in HEK cells. (+)-MK-801 significantly inhibited the uptake of all three monoamine transporters in a dose-dependent manner and the inhibitions were competitive with respect to monoamines. The Ki values of (+)-MK-801 on the norepinephrine, dopamine and serotonin transporters were 3.2 μM, 40 μM and 43 μM, respectively. In addition, (−)-MK-801, a less potent antagonist of NMDA receptors, also inhibited monoamine transporters with a similar potency as that of (+)-MK-801. These results clearly indicate that MK-801, a non-competitive antagonist of NMDA receptors, competitively inhibits monoamine transporters without stereoselectivity

    Characterization of Vesicular Monoamine Transporter 2 and its role in Parkinson\u27s Disease Pathogenesis using Drosophila

    Get PDF
    Parkinson’s disease (PD) is a progressive neurodegenerative disorder caused by the selective loss of the dopaminergic neurons in the Substantia nigra pars compacta region of the brain. PD is also the most common neurodegenerative disorder and the second most common movement disorder. PD patients exhibit the cardinal symptoms, including tremor of the extremities, rigidity, slowness of movement, and postural instability, after 70-80% of DA neurons degenerate. It is, therefore, imperative to elucidate the underlying mechanisms involved in the selective degeneration of DA neurons. Although increasing numbers of PD genes have been identified, why these largely widely expressed genes induce selective loss of DA neurons is still not known. Notably, dopamine (DA) itself is a chemically labile molecule and can become oxidized to toxic by-products while induce the accumulation of harmful molecules such as Reactive Oxygen Species (ROS). Accordingly, DA toxicity has long been suspected to play a role in selective neuronal loss in PD. Vesicular Monoamine Transporter (VMAT) is essential for proper vesicular storage of monoamines such as DA and their regulated release. Increasing evidence have linked VMAT dysfunction with Parkinson’s disease. In this study, we re-examine the gain- and loss-of-function phenotypes of the sole VMAT homologue in Drosophila. Our results suggest that the C-terminal sequences in the two encoded VMAT isoforms not only determine their differential subcellular localizations, but also their activities in content release. In particular, VMAT2 orthologue potentially poses a unique, previously unexplored activity in promoting DA release. On the other hand, by examining DA distribution in wildtype and VMAT mutant animals, we find that there exists intrinsic difference in the dynamics of intracellular DA handling among DA neurons clustered in different brain regions. Furthermore, loss of VMAT causes severe loss of total DA levels and a redistribution of DA in Drosophila brain. Lastly, removal of both VMAT and another PD gene parkin, which is also conserved in Drosophila, results in the selective loss of DA neurons, primarily in the protocerebral anterior medial (PAM) clusters of the brain. Our results suggest a potential involvement of cytoplasmic DA in selective degeneration of DA neurons and also implicating a role for a differential intracellular DA handling mechanism underlying the regional specificity of neuronal loss in PD patients

    Quantitative pharmacologic MRI: Mapping the cerebral blood volume response to cocaine in dopamine transporter knockout mice

    Get PDF
    The use of pharmacologic MRI (phMRI) in mouse models of brain disorders allows noninvasive in vivo assessment of drug-modulated local cerebral blood volume changes (ΔCBV) as one correlate of neuronal and neurovascular activities. In this report, we employed CBV-weighted phMRI to compare cocaine-modulated neuronal activity in dopamine transporter (DAT) knockout (KO) and wild-typemice. Cocaine acts to block the dopamine, norepinephrine, and serotonin transporters (DAT, NET, and SERT) that clear their respective neurotransmitters from the synapses, helping to terminate cognate neurotransmission. Cocaine consistently reduced CBV, with a similar pattern of regional ΔCBV in brain structures involved inmediating reward in both DAT genotypes. The largest effects (−20% to −30% ΔCBV) were seen in the nucleus accumbens and several cortical regions. Decreasing response amplitudes to cocaine were noted in more posterior components of the cortico-mesolimbic circuit. DAT KO mice had significantly attenuated ΔCBV amplitudes, shortened times to peak response, and reduced response duration in most regions. This study demonstrates that DAT knockout does not abolish the phMRI responses to cocaine, suggesting that adaptations to loss of DAT and/or retained cocaine activity in other monoamine neurotransmitter systems underlie these responses in DAT KO mice
    corecore